Загадка карты Меркатора. Практическая картография Предельная точность масштаба

Посмотрело: 9 375

Равноугольная цилиндрическая проекция Меркатора - основная и одна из первых картографических проекций. Одна из первых, так является второй в использовании. До ее появления пользовались равнопромежуточной проекцией или географической проекцией Марниуса Тирского, впервые предложенной в 100-м году до нашей эры (2117 лет назад). Данная проекция являлась не равновеликой ни равноугольной. Относительно точными на этой проекции, получались координаты мест наиболее ближе расположенных к экватору.

Разработана Герардом Меркатором в 1569 году для составления карт, которые публиковались в его «Атласе ». Название проекции «равноугольная » означает, что проекция сохраняет углы между направлениями, известные как постоянные курсы или румбовые углы. Все кривые на поверхности Земли в равноугольной цилиндрической проекции Меркатора изображаются прямыми линиями .

"... Картографическая проекция UTM была разработана в период с 1942 - 1943 годы в германском Вермахте. Ее разработка и появление, вероятно, осуществлялось в Abteilung für Luftbildwesen (Департаменте аэрофотосъемки) Германии... c 1947 года армия США использовала очень похожую систему, но со стандартным коэффициентом масштаба 0,9996 на центральном меридиане, в отличие от немецкого 1,0.

Немного теории (и истории) о равноугольной цилиндрической проекции Меркатора

В проекции Меркатора меридианы являются параллельными равноотстоящими линиями. Параллели представляют собой параллельные линии, расстояние между которыми вблизи экватора равно расстоянию между меридианами с увеличением при приближении к полюсам. Таким образом, масштаб искажений к полюсам становится бесконечным, по этой причине Южный и Северный полюса не изображаются на проекции Меркатора. Карты в проекции Меркатора ограничиваются областями 80° ‒ 85° северной и южной широты.

"Универсальная равноугольная поперечная проекция Меркатора (UTM) использует 2-х мерную декартову систему координат... то есть, она используется для определения местоположения на Земле, независимо от высоты места...

Все линии постоянных курсов (или румбов) на картах Меркатора представляются прямыми сегментами. Два свойства: равноугольность и прямые линии румбов, делают эту проекцию уникально подходящей для применения в морской навигации: курсы и направление измеряются с помощью розы ветров или транспортира, а соответствующие направления легко переносятся от точки к точке на карте с помощью параллельной линейки или парой навигационных транспортиров для вычерчивания линий.

Название и разъяснение определенное Меркатором на его карте мира Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendata: «Новое, дополненное и исправленное описание Земли для применения моряками » указывает на то, что она специально была задумана для использования в морском судоходстве.

Поперечная проекция Меркатора.

Хотя метод построения проекции не объясняется автором, Меркатор, вероятно, использовал графический метод, передавая некоторые линии румбов ранее нанесенные на земном шаре к прямоугольной сетке координат (сетки, образованной линиями широты и долготы), а затем отрегулировал расстояние между параллелями так, что эти линии стали прямыми, что создавало один и тот же угол с меридианом, как на глобусе.

Разработка картографической равноугольной проекции Меркатора представляло собой крупный прорыв в морской картографии XVI века. Тем не менее, ее появление намного опережало свое время, так как старые навигационные и геодезические методы не были совместимы с ее использованием в навигации.

Две основные проблемы мешали ее немедленному применению: невозможность определения долготы на море с достаточной точностью, и тот факт, что в морской навигации использовались магнитные, а не географические направления. Только спустя почти 150 лет, в середине XVIII века, после того, как был изобретен морской хронометр, и стало известно пространственное распределение магнитного склонения, картографическая равноугольная проекция Меркатора была полностью принята в морской навигации.

Картографическая равноугольная проекция Гаусса-Крюгера является синонимом к поперечной проекции Меркатора, но в проекции Гаусса-Крюгера цилиндр разворачивается не вокруг экватора (как в проекции Меркатора), а вокруг одного из меридианов. Результатом является равноугольная проекция, которая не сохраняет правильные направления.

Центральный меридиан находится в том регионе, который может быть выбран. По центральному меридиану искажения всех свойств объектов региона минимальные. Эта проекция наиболее подходит для картографирования территорий, протяженных с севера на юг. Система координат Гаусса-Крюгера основывается на проекции Гаусса-Крюгера.

Картографическая проекция Гаусса-Крюгера полностью аналогична универсальной поперечной проекции Меркатора, ширина зон в проекции Меркатора составляет 6°, тогда как в проекции Гаусса-Крюгера ширина зон составляет 3°. Проекцией Меркатора удобно пользоваться морякам, проекцией Гаусса-Крюгера сухопутным войскам в ограниченных территориях Европы и Южной Америки. Кроме того, проекция Меркатора 2-х мерная точность определения широты и долготы по карте не зависит от высоты места, тогда как проекция Гаусса-Крюгера - 3-х мерная, и точность определения широты и долготы находится в постоянной зависимости от высоты места.

До окончания Второй мировой войны данная картографическая проблема стояла особенно остро, так как она усложняла вопросы взаимодействия между флотом и сухопутными войсками при ведении совместных действий.

Экваториальная проекция Меркатора.

Можно ли объединить две эти системы в одну? Можно, что и было произведено в Германии в период с 1943 по 1944 годы.

Универсальная равноугольная поперечная проекция Меркатора (UTM) использует 2-х мерную декартову систему координат, чтобы предоставлять определение места на поверхности Земли. Подобно традиционным методом широты и долготы, она представляет горизонтальное положение, то есть, она используется для определения местоположения на Земле, независимо от высоты места.

История появления и развития картографической проекции UTM

Однако, она отличается от этого метода в нескольких отношениях. Система UTM не просто проекция карты. Система UTM делит Землю на шестьдесят зон, каждая из которых имеет шесть градусов долготы, и использует пересекающуюся поперечную проекцию Меркатора в каждой зоне.

Большинство американских вышедших публикаций не указывают на первоисточник системы UTM. Вебсайт NOAA, утверждает, что система была разработана Инженерным корпусом армии США, и опубликованный материал, который не утверждает происхождение, по-видимому, основывается на этой оценке.

"Искажение масштаба возрастает в каждой зоне UTM когда границы между зонами UTM приближаются. Тем не менее, часто бывает удобно или необходимо, измерить ряд местоположений в одной координатной сетке, когда некоторые из них расположены в двух соседних зонах...

Тем не менее, серия аэрофотоснимков найденных в Bundesarchiv-Militärarchiv (военной части Федерального архива Германии) по всей видимости, начиная с 1943 - 1944 годах имеют надпись UTMREF логически вытекаемые координатные буквы и цифры, а также отображаемую в соответствии с поперечной проекцией Меркатора. Эта находка великолепно указывает на то, что картографическая проекция UTM была разработана в период с 1942 - 1943 годы в германском Вермахте. Ее разработка и появление, вероятно, осуществлялось в Abteilung für Luftbildwesen (Департаменте аэрофотосъемки) Германии. В дальнейшем с 1947 года армия США использовала очень похожую систему, но со стандартным коэффициентом масштаба 0,9996 на центральном меридиане, в отличие от немецкого 1,0.

Для областей в пределах Соединенных Штатов использовался эллипсоид Clarke 1866 года. Для остальных районов Земли, в том числе для Гавайев использовался Международный эллипсоид. Эллипсоид WGS84 теперь обычно используется для моделирования Земли в системе координат UTM, означающее, что текущая ордината UTM в данной точке может отличаться до 200 метров от старой системы. Для разных географических регионов, например: ED50, NAD83 могут быть использованы и другие системы координат.

До разработки универсальной поперечной системы координат проекции Меркатора, некоторые европейские страны продемонстрировали полезность координатной сетки на основе конформных отображений (сохраняющих локальные углы) картографии для их территорий в межвоенный период.

Расчет расстояний между двумя точками на этих картах мог быть выполнен легко в полевых условиях (используя теорему Пифагора), в сравнении с возможным использованием тригонометрических формул, требуемых в соответствии с координатной сетки на основе системы широты и долготы. В послевоенные годы, эти концепции были расширены в Универсальной поперечной проекции Меркатора/Универсальная полярной стереографической системе координат (UTM/UPS), которая является глобальной (или универсальной) системой координат.

Поперечная проекция Меркатора представляет собой вариант проекции Меркатора, которая первоначально была разработана фламандским географом и картографом Герардом Меркатором в 1570 году. Эта проекция является конформной, означающей, что сохраняются углы и, следовательно, позволяет формировать небольшие регионы. Тем не менее, она искажает расстояние и площадь.

Система UTM делит Землю между 80° южной широты и 84° северной широты на 60 зон, каждая зона равна 6 ° долготы в ширину. Зона 1 охватывает долготы от 180° до 174° W (западной долготы); зона нумерации увеличивается в восточном направлении к зоне 60, которая охватывает долготы от 174° до 180° E (восточной долготы).

Каждый из 60 зон использует поперечную проекцию Меркатора, которая может сопоставить область большей степени север-юг с низким уровнем искажений. Используя узкие зоны 6° долготы (до 800 км) в ширину, и уменьшая масштабный коэффициент вдоль центрального меридиана 0,9996 (сокращение 1: 2500), величина искажения удерживается ниже 1-й части 1000 в внутри каждой зоны. Искажение масштаба возрастает до 1,0010 на границах зоны вдоль экватора.

В каждой зоне масштабный фактор центрального меридиана уменьшает диаметр поперечного цилиндра для получения пересекающейся проекции с двумя стандартными линиями или линиями истинного масштаба, около 180 км на каждой стороне, и примерно параллельны центральному меридиану (Arc cos 0,9996 = 1,62° на экваторе). Шкала меньше 1 внутри стандартных линий и больше 1 за их пределами, но общее искажение сведено к минимуму.

Искажение масштаба возрастает в каждой зоне UTM когда границы между зонами UTM приближаются. Тем не менее, часто бывает удобно или необходимо, измерить ряд местоположений в одной координатной сетке, когда некоторые из них расположены в двух соседних зонах.

Вокруг границ крупномасштабных карт (1: 100 000 или более) координаты для обоих примыкающих зонах UTM обычно печатаются в пределах минимального расстояния 40 км по обе стороны от границы зоны. В идеале, координаты каждой позиции должны быть измерены на координатной сетке для зоны, в которой они расположены, а масштабный коэффициент все еще относительно небольших границ ближней зоны можно перекрывать измерениями в соседнюю зону на некоторое расстояние, когда это необходимо.

Полосы Широт не являются частью системы UTM, а скорее частью опорной военной системы координат (MGRS). Они, однако, иногда используются.

Эллипсоидная проекция Меркатора.

Каждая зона сегментирована на 20 широтных полос. Каждая широтная полоса в высоту 8 градусов, и начинается литерными буквами с «C » при 80°S (южной широты), увеличиваясь по английскому алфавиту до буквы «X », пропуская буквы «I » и «O » (из-за их сходства с цифрами единицы и ноль). Последняя широта диапазона, «X », продлевается дополнительно на 4 градуса, так что она заканчивается на 84° северной широты, охватывая, таким образом, самую северную часть на Земле.

Заключение о картографической проекции (UTM/UPS) Меркатора

Широта полосы «A » и «B » действительно существуют, как и полосы «Y » и «Z ». Они охватывают западную и восточную стороны антарктических и арктических регионов соответственно. Удобно мнемонически помнить, что любая буква, стоящая перед «N » в алфавитном порядке - зона находится в южном полушарии, а любая буква после буквы «N » - когда зона находится в северное полушарие.

Сочетание зоны и широтной полосы - определяет зону координатной сетки. Зона всегда записывается первой, а затем широтная полоса. Например, положение в Торонто, Канаде, окажется в зоне 17-й и широтной зоне «Т », таким образом, полная ссылка зона координатной сетки «17Т ». Зоны координатной сетки служат для определения границ нерегулярных UTM зон. Они также являются неотъемлемой частью эталонной сетки военной системы координат. Метод также используется, чтобы просто добавлять N или S после номера зоны, чтобы указать северное или южное полушарие (к плановым ординатам координат вместе с номером зоны все необходимое для определения позиции, за исключения, на каком полушарии).

Проекция Меркатора

Равноугольная цилиндрическая проекция впервые была предложена и применена в 1569 году голландским картографом Меркатором.

Для вывода формул этой проекции определим сначала масштаб по параллелям в простейшей из цилиндрических проекций в так называемой квадратной проекции. В этой проекции меридианы и параллели, проведенные через одинаковое число градусов по долготе и широте, образуют на карте сетку квадратов, причем сохраняются длины по всем меридианам и экватору (проекция равнопромежуточная).

Пусть PC0A0 и PD0B0 (рис. 1) -меридианы на глобусе радиуса R с бесконечно малой разностью долгот, а прямые

Рис. 1. Два меридиана и две параллели на глобусе и на карте в цилиндрической проекции

СА и DB - соответствующие меридианы на карте в квадратной проекции.

Тогда бесконечно малому отрезку С0D0 произвольной параллели с широтой и радиусом r на глобусе будет соответствовать на карте бесконечно малый отрезок CD, и масштаб по параллели

CD = AB = A 0 B 0 ,

Где A0B0 - дуга экватора.

Так как отношение дуг окружностей равно отношению их радиусов, то

Из ОС 0С" , где ОС 0С" = Имеем

Следовательно,

Из формулы видно, что масштаб по параллели в квадратной проекции изменяется от единицы до бесконечности, причем единице он равен на экваторе (при = 0°), а бесконечности-в точке полюса (при = 90°). Полюс в квадратной проекции изобразится отрезком прямой, равным по длине экватору.

Теперь, чтобы сделать масштаб по меридианам равным масштабу по параллелям (m=n), т. е. чтобы перейти от квадратной проекции к равноугольной (от эллипсов искажений к кругам), необходимо меридианы квадратной проекции растянуть в каждой точке во столько раз, во сколько раз параллели этой проекции увеличены по отношению к соответствующим параллелям глобуса, т. е. в Раз. Следовательно, для превращения в первом приближении квадратной картографической сетки в картографическую сетку равноугольной проекции необходимо отрезки меридиана ОА, АВ, ВС и т. д. (рис. 2) соответственно умножить

Рис. 2. Превращение квадратной проекции в равноугольную цилиндрическую

на 1, 2, 3 и т. д., где 1,2, 3 - соответственно широты середин этих отрезков. Тогда меридианный отрезок ОС1 в равноугольной проекции, соответствующий отрезку ОС в квадратной проекции, представится выражением

ОС1 = О A 1 + A 1 В1, + В1С1 = О A 1 + AB 2 + BC 3 ,

А так как отрезки

ОА = АВ = ВС ,

ОС 1 =ОА (1 +2 +3).

Меридианный отрезок ОС 1 будет определен тем точнее, чем меньшими будут взяты составляющие его отрезки, поскольку растяжение меридианов должно носить непрерывный характер от экватора до данной параллели.

Наиболее точный результат будет получен тогда, когда меридианный отрезок D в проекции Меркатора будет состоять из суммы бесконечно большого количества бесконечно малых величин

,

Где Dx - бесконечно малый отрезок меридиана в квадратной проекции,

DD - соответствующий ему бесконечно малый отрезок меридиана в равноугольной проекции Меркатора. Но ввиду постоянства масштаба по меридианам в квадратной проекции отрезок

Сумму же бесконечно малых величин в высшей математике называют интегралом. Взять интеграл от обеих частей равенства это значит взять сумму бесконечно малых величин этих частей равенства в определенных пределах.

Интеграл от выражения в пределах значения широты от 0 до Напишем так

В результате интегрирования в левой части равенства получим меридианный отрезок D; правая же часть равенства представляет собой табличный интеграл, равный

Таким образом, меридианный отрезок

,

где С-постоянная интеграции.

Величина, С должна быть постоянной при всех значениях широты, поэтому ее легко определить, взяв = 0°. При = 0° параллель соответствует экватору, для которого D = 0, т. е.

Следовательно,

Переходя от натурального логарифма к десятичному и выражая D в главном масштабе карты и в сантиметрах, будем иметь окончательную рабочую формулу для вычисления меридианного отрезка D в равноугольной цилиндрической проекции для шара

(29)

Где Mod =0,4343.

Формула показывает, что меридианный отрезок D для полюса ( = 90°) равен бесконечности, т. е. полюс на карте в этой проекции не изобразится.

Принимая же Землю за эллипсоид, будем иметь формулу

(30)

Где а - радиус экватора земного эллипсоида (выражен в метрах),

U - та же величина, что и в формуле (22) равноугольной конической проекции.

Расстояния между меридианами в равноугольной проекции, как и в квадратной проекции, определяются по формуле

Где выражено в радианной мере. Принимая Землю за эллипсоид и выражая в главном масштабе карты и в сантиметрах, будем иметь

Часто эта формула пишется в виде

(31)

Где У - расстояние от среднего меридиана карты до определяемого,

°-разность долгот среднего и определяемого меридианов, выраженная в градусах, °=57°,3.

Очевидно, что искажения в равноугольной цилиндрической проекции на касательном цилиндре будут выражаться формулами

(32)

Для вычисления меридианных отрезков D, ординат у и масштабов в равноугольной цилиндрической проекции на секущем цилиндре рабочие формулы будут иметь вид

(34)

(35)

(37)

Где r0- радиус параллели сечения с широтой 0 на земном эллипсоиде,

r-радиус параллели с широтой на земном эллипсоиде, по которой определяется масштаб,

Главный масштаб карты,

°- разность долгот среднего и определяемого меридианов, выраженная в градусах.

Картографическая сетка в проекции Меркатора

Для построения картографической сетки в проекции Меркатора и нанесения опорных пунктов на составляемую карту необходимо знать прямоугольные координаты (меридианный отрезок D и ординату у) точек пересечения меридианов и параллелей и опорных пунктов.

Значение D по аргументу широты среднее выбирается из специальных таблиц, составленных Гидрографическим управлением ВМФ, а значение у вычисляется по формуле (35).

За начало координат на морских картах берется точка пересечения среднего меридиана и главной параллели морского бассейна, для которого составляются карты. Эта параллель является параллелью сечения, и масштаб по ней равен единице.

Зная прямоугольные координаты вершин углов рамки листа карты, находят размеры сторон этой рамки, как разности меридианных отрезков D для южной и северной параллелей и разности значений у для западного и восточного меридианов. По найденным размерам сторон строят прямоугольник (внутреннюю рамку листа), который будет являться основой для построения промежуточных меридианов и параллелей карты, а также для нанесения опорных пунктов.

Меридианы и параллели в проекции Меркатора изображаются параллельными и взаимно-перпендикулярными прямыми, поэтому для их построения достаточно определить меридианные отрезки D. Для точек пересечения параллелей карты с осью X и ординаты у для точек пересечения меридианов карты с осью У. Когда эти значения найдены, определяют разности D - Dю и у - у3 для указанных точек. Здесь Dю - меридианный отрезок южной параллели, а уз- ордината западного меридиана. Эти разности откладывают от вершины юго-западного угла рамки по западной и южной сторонам и через точки отложения проводят линии, параллельные соответственно южной и боковой сторонам, которые и будут являться параллелями и меридианами карты.

Рис 3 Картографическая сетка в равноугольной цилиндрической проекции (Меркатора)

На рис. 3 показана картографическая сетка в равноугольной цилиндрической проекции (на касательном цилиндре) для изображения земного шара. Значения масштабов в этой проекции приведены в таблице 4.

Таблица 4

Масштабы в равноугольной цилиндрической проекции Меркатора.

Благодаря тому, что проекция Меркатора является равноугольной, а меридианы изображаются в ней параллельными прямыми, она обладает одним замечательным свойством: линия, пересекающая все меридианы под одним и тем же углом, изображается в этой проекции прямой. Такая линия называется локсодромией. Движущееся судно, если оно с помощью компаса держит один и тот же курс, фактически идет по локсодромии. Указанное свойство проекции Меркатора привело к широкому ее использованию для морских карт.

Рис. 4. Ортодромия и локсодромия на карте в проекции Меркатора

Ортодромия и локсодромия

По карте, составленной в проекции Меркатора, легко и просто отмечать путь судна и определять его постоянный курс, т. е. направление, по которому оно должно двигаться, чтобы попасть из одной точки в другую. Постоянный курс судна определяется путем измерения транспортиром угла между прямой, соединяющей эти точки на карте, и одним из меридианов.

Однако следует заметить, что при большом расстоянии между точками А и В (рис. 4) локсодромия на сфере значительно отходит в сторону от ортодромии (кратчайшего расстояния между этими точками), которая в проекции

Рис. 5. Ортодромия и локсодромия между Нью-Йорком и Москвой на карте в проекции Меркатора.

Меркатора изображается кривой линией. В этом случае штурман ведет судно не по одному курсу, а по нескольким, меняя направление движения в определенных точках (а и b). Путь судна при этом изобразится на карте в виде ломаных линий хорд, вписанных в ортодромию. Применительно к рисунку, судно из точки А к точке А пойдет под азимутом из точки А к точке b - под азимутом , из точки b к конечной точке В - под азимутом .

Для наглядности можно указать (рис. 5), что между Нью-Йорком и Москвой длина ортодромии составляет 7507 км, а локсодромии - 8371 км, т. е. разница между их длинами равна 864 км. Наибольшее удаление точек локсодромии от ортодромии здесь достигает 1650 км.

Второе удобство проекции Меркатора в применении ее для морских навигационных карт состоит в том, что она позволяет легко, с достаточной для практики точностью, определять по карте расстояния в морских милях, не прибегая при этом к построению особых масштабов, а пользуясь лишь делениями (в градусах или минутах), нанесенными на боковых сторонах рамки карты. Морская миля равна 1852 м, что приблизительно соответствует средней длине дуги меридиана в одну минуту.

Если, например, по карте требуется определить в морских милях расстояние АВ (рис. 42), то, сняв раствором циркуля отрезок АВ, прикладывают циркуль к ближайшей боковой стороне рамки карты так, чтобы середина отрезка- точка С-оказалась на средней широте точек А и В (в точке С1). Количество меридианных минут, подсчитанное в пределах этого отрезка, и будет выражать расстояние АВ в морских милях (на рис. 6 отрезок А В = 215 миль).

В заключение необходимо отметить, что при составлении топографических и обзорно-топографических карт различных масштабов широко используются в качестве картографического материала различные Морские карты, составленные в равноугольной цилиндрической проекции. Поэтому знание особенностей этой проекции имеет большое практическое значение.

Рис. 6. Определение расстояния АВ в милях по карте в проекции Меркатора

Упражнение

Вычислить меридианный отрезок D и ординату «у» в равноугольной цилиндрической проекции на касательном цилиндре для точки с географическими координатами = 30°, 35° (от среднего меридиана, принятого за ось X) при = 1:5000000. Эллипсоид Красовского.

Равноугольная цилиндрическая проекция - 5.0 out of 5 based on 1 vote

Посмотрите на эту карту и скажите, какая территория больше по площади: Гренландия, помеченная белым, или Австралия, помеченная оранжевым? Кажется, что Гренландия больше Австралии раза в три по крайней мере.

Но, заглянув в справочник, мы к своему удивлению прочитаем, что площадь Австралии составляет 7,7 млн км 2 , а площадь Гренландии - только 2,1 млн км 2 . Так что Гренландия кажется такой большой только на нашей карте, а в действительности она меньше Австралии примерно в три с половиной раза. Сравнивая эту карту с глобусом, можно заметить, что чем дальше от экватора находится территория, тем сильнее она растянута.

Карта, которую мы с вами рассматриваем, построена с помощью картографической проекции, которую придумал в XVI веке фламандский учёный Герард Меркатор . Он жил в эпоху, когда прокладывались новые торговые пути через океаны. Колумб открыл Америку в 1492 году, а первое кругосветное плавание под руководством Магеллана состоялось в 1519–1522 годах - когда Меркатору было 10 лет. Открытые земли надо было наносить на карты, а для этого надо было научиться изображать на плоской карте круглую Землю. И карты надо было делать такими, чтобы капитанам было удобно ими пользоваться.

А как капитан пользуется картой? Он прокладывает по ней курс. Мореплаватели XIII–XVI века пользовались портуланами - картами, на которых изображался бассейн Средиземного моря, а также лежащие за Гибралтаром побережья Европы и Африки. На такие карты была нанесена сетка румбов - линий постоянного направления. Пусть капитану нужно проплыть в открытом море от одного острова до другого. Он прикладывает к карте линейку, определяет курс (например, «на юго-юго-восток») и отдаёт рулевому приказ держать этот курс по компасу.

Идея Меркатора состояла в том, чтобы сохранить принцип прокладки курса по линейке и на карте мира. То есть, если держать по компасу постоянное направление, то путь на карте будет прямой. Но как это сделать? И здесь на помощь картографу приходит математика. Мысленно разрежем глобус на узкие полоски по меридианам, как показано на рисунке. Каждую такую полоску можно без особых искажений развернуть на плоскости, после чего она превратится в треугольную фигуру - «клин» с искривлёнными боковыми сторонами.

Однако глобус при этом оказывается рассечённым, а карта должна быть сплошной, без разрезов. Чтобы этого добиться, разделим каждый клин на «почти квадраты». Для этого из нижней левой точки клина проведём отрезок под углом 45° до правой стороны клина, оттуда проведём горизонтальный разрез до левой стороны клина - отрезали первый квадрат. Из точки, где кончается сделанный разрез, снова проведём отрезок под углом 45° до правой стороны, потом горизонтальный - до левой, отрезая следующий «почти квадрат», и так далее. Если исходный клин был очень узким, «почти квадраты» будут отличаться от настоящих квадратов совсем незначительно, поскольку их боковые стороны будут почти вертикальными.

Выполним завершающие действия. Выпрямим «почти квадраты» до настоящей квадратной формы. Как мы поняли, искажения при этом можно сделать сколь угодно малыми, уменьшая ширину клиньев, на которые мы режем глобус. Квадраты, прилежавшие на глобусе к экватору, выложим в ряд. На них уложим по порядку все остальные квадраты, растянув их перед этим до размеров приэкваториальных квадратов. Получится сетка из квадратов одного размера. Правда, при этом параллели, равноотстоящие на карте, уже не будут равноотстоящими на глобусе. Ведь чем дальше исходный квадрат на глобусе отстоял от экватора, тем большему увеличению он подвергся при переносе на карту.

Однако углы между направлениями при таком построении останутся неискажёнными, потому что каждый квадрат практически только изменился в масштабе, а направления при простом увеличении картинки не меняются. И именно этого добивался Меркатор, когда он придумывал свою проекцию! Капитан может прокладывать свой курс на карте по линейке и вести по этому курсу свой корабль. При этом корабль будет плыть по линии, идущей под одним и тем же углом ко всем меридианам. Эта линия называется локсодромией .

Плавание по локсодромии очень удобно, поскольку оно не требует никаких специальных расчётов. Правда, локсодромия не является кратчайшей линией между двумя пунктами на земной поверхности. Такую кратчайшую линию можно определить, натянув на глобусе нитку между этими пунктами.

Художник Евгений Паненко

При решении задач навигации возникает необходимость отображения на морской карте линии курса корабля (локсодромии), измерения и прокладки углом и направлений. Исходя из указанных задач, к картографической проекции морской карты предъявляются следующие требования:

Локсодромия на карте должна изображаться прямой линией;
- углы, измеренные на местности, должны быть равны соответствующим углам, проложенным на карте, т. е. проекция должна быть равноугольной.

Указанным требованиям удовлетворяет прямая равноугольная цилиндрическая проекция, разработанная в 1569 году голландским картографом Герардом Кремером (Меркатором).

1. Земля принимается за шар и рассматривается условный глобус, масштаб которого равен главному масштабу.
2. Координатные линии (меридианы и параллели) проецируются на цилиндр.
3. Ось цилиндра совпадает с осью условного глобуса.
4. Цилиндр касается условного глобуса по линии экватора.
5. Меридианы и параллели условного глобуса проецируются на поверхность цилиндра таким образом, чтобы их проекции оставались в плоскотях меридианов и параллелей.
6. После разрезания цилиндра по образующей и разворачивания в плоскость образуется картографическая сетка - взаимноперпендикулярные прямые линии: меридианы и параллели.

7. Цилиндр касается условного глобуса по экватору, поэтому круг Ao1 на экваторе на карте изображается кругом A1.
8. При проецировании параллелей происходит их растяжение, причем чем параллель дальше отстоит от экватора (больше географическая широта) тем растяжение больше: круги Ао2 и Ао3 на карте изображаются эллипсами А2, А3, т. е. полученная проекция не равноугольная.
9. Чтобы эллипсы А2 и Аз превратились в круги А2" А3" неооходимо меридиан в каждой точке вытянуть пропорционально растяжению параллели в данной точке.
Чем больше широта, тем больше растянута параллель, а следовательно, тем больше должен быть вытянут меридиан
10. В результате одинаковые круги на глобусе, расположенные на разных параллелях, на карте изобразятся кругами разных размеров, увеличивающихся с географической широтой.

Графическое изображение на карте одной минуты дуги меридиана (морская миля) увеличивается с географической широтой.

Следовательно, при измерении и прокладке расстояний необхо-димо использовать ту часть линейного масштаба карты, в широте которого осуществляется плавание корабля.

Полученная таким образом проекция является:
- прямой - ось цилиндра совпадает с осью вращения Земли;
- равноугольной - элементарный круг на земной поверхности изображается на карте кругом (сохраняется подобие фигур);
- цилиндрической - картографическая сетка (меридианы и параллели)представляет собой взаимно перпендикулярные прямые линии.

Уравнение проекции для шара имеет вид:

X = R ln tg (45" + φ/2); y = R λ;

При получении проекции главный масштаб соответствовал главному масштабу условного глобуса, т е. при проецировании на цилиндр искажения отсутствовали на линии, по которой цилиндр касался глобуса - на экваторе.

При изготовлении карт в данной проекции это оказалось недостаточно удобным. Поэтому для каждой широтной зоны выбрали линию проекции, на которой отсутствуют искажения - главную параллель. Параллель, на которой масштаб равен главному масштабу, называется главной параллелью. Широта главной параллели данной карты указывается в заголовке карты.

Позволяющий накладывать контуры стран на другие территории с учётом компенсации искажений проекции Меркатора. Эта проекция была когда-то создана в навигационных целях - чтобы обеспечить точное взаимное расположение территорий по осям "север - юг" и "запад - восток". Однако у неё есть свой недостаток - чем ближе к полюсам, тем больше искажение. Другие проекции также имеют серьёзные искажения. Именно поэтому наше восприятие географической карты тоже существенно искажено - скажем, Гренландия на карте проекции Меркатора занимает площадь втрое больше Австралии, хотя в реальности она в 3,5 раза меньше (!). И чем ближе к экватору, тем относительная величина стран меньше.

В общем, на этом сайте можно проделывать всякие любопытные фокусы и смотреть метаморфозы разных стран в наложении. Даже удивительно, что такой сайт не появился раньше - настолько хороша базовая идея. Иногда получаются удивительные эффекты, рушащие привычные шаблоны. Кроме того, страну можно вертеть по окружности, и в этом случае также будут учитываться компенсации проекции.

Давайте некоторые эффекты посмотрим.
Вот, например, наложение на индонезийские острова некоторых стран Европы. Смотрите, как скромненько смотрится немаленькая Франция на Калимантане (справа). Чехия наложена на юг Малайзии и Сингапур (в центре), а слева - Норвегия на Суматре. Очень протяжённая в европейских масштабах, на самом деле она всего лишь чуть длинней о.Суматра.


2. Китай на Восточной Евразии. Если зафиксировать его западную границу на линии Таллин - Прага, то восток (Маньчжурия) будет восточней Новосибирска, а Ляодунский полуостров - где-то в районе Астаны. Хайнань при этом будет в центральном Иране.

3. Австралия на Восточной Евразии. Вот тут компенсация проекции Меркатора видна наиболее наглядно: она простирается от Мюнхена до Челябинска, а с юга на север - и того больше. Тут видно, какие колоссальные по площади пустынные территории имеются в Австралии - не меньше, чем сибирские стылые просторы, ведь там населен более-менее только юго-восток и узкой полоской на запад.

4. Мексика на Европе. От французского Бреста почти до Нижнего Новгорода. А мексиканская Калифорния тянется от Нормандии до Венеции.

5. Индонезия на Восточной Евразии. Протяженность островов эквивалентна расстоянию от Северной Ирландии до Центрального Казахстана, а один только Калимантан легко покрывает всю Прибалтику с российским Северо-Западом.

6. Соединённые Штаты на Восточной Евразии. От Таллина - больше чем до Красноярска!

7. Казахстан на Европе. Тоже, в общем-то, очень солидно: от запада Франции почти до Харькова. Накрывает большую часть континентальной Европы.

8. Иран на Северной Европе: от норвежских Лофотен до Казани:)

9. Вьетнам на Европейской России. По вертикали эквивалентен расстоянию поезда №7 Ленинград - Севастополь, но и по горизонтали тоже ничего: от Москвы до Челябинска, причём изогнуто.

Другие любопытные сравнения.

10. Камчатка и Великобритания. Небольшая совсем: от мыса Лопатка до Паланы.

11. Эстония как треть небольшой в принципе Либерии.

12. Австрия, Венгрия, Бельгия на Мадагаскаре.

Посмотрим теперь эквиваленты России.

13. Россия на Австралии. Если Перт в районе Махачкалы, то Мельбурн - где-то около Барнаула. Солидно. Но всё равно Россиюшка простирается чуть ли не до Фиджи.

14. Россия на Африке. Кубань в районе ЮАР (Новороссийск как Кейптаун) - Камчатка достигает юга Анатолии, примерно где Анталья.

15. Россия на Южной Америке. Если Огненная Земля примерно где Чечня - то Камчатка в районе Колумбии, а Чукотка заходит северней Панамского канала. Видите, сколь колоссальна наша страна? Больше целого континента.

16. Россия на Северной Америке. Сан-Франциско в районе Крыма - Чукотка почти у Ирландии. Тут хорошо видна величина океанских просторов Северной Атлантики, кстати.

17. Люксембург на Санкт-Петербурге. Не такой уж он и маленький:)))

18. На этой территории (Бангладеш, отмечено синим) - живёт 168 млн. человек!!! Представляете плотность населения? И это не комфортный умеренный климат, а влажные тропические джунгли и протоки Ганга и Брахмапутры...

19. И на десерт - Чили вдоль Транссиба. Как видите, она покрывает расстояние от Москвы до Байкала, узкой полосой.

Вот такие любопытные сравнения:)





error: Контент защищен !!